EEL308 Minor Exam 1 Semester 1302  Full marks: 20 7 February 2014
(Permitted references: Textbook (Patterson, Hennessy) and lecture notes)
Absolutely no Internet access, use of Wikipedia, etc. This andlor any other
malpractice will straightaway lead to ‘F’ grade in the entire course.
Please begin your answer to each question on a new page.
Good luck! © -
1. (8 marks) Ideal speedup of an application obtained as a result of parallelisation IS equal
to the number of processors. Real speedup however depends on the fraction of the
application that can be parallelised (degree of parallelisation) and other overheads

incurred during parallelisation, chiefly the cost of communication amongst processors.
The table below shows certain parameters for three instruction classes A, BandC.

Instruction | Instruction | CPI for Degree of Communication
class frequency uniprocessor | parallelisation overhead per
(%) possible for this instruction (in clock
instruction class cycles) (N is the
(%) number of
processors)

A 20 1 0 0

B 40 3 80 0.5*N

C 40 5 100 0.5*N

a. Considering no communication overhead, what is the maximum overall speedup
achievable, given an infinite number of processors? (3]

b. Under the same condition as (a), what would be the minimum number of processors
required to achieve a speedup of at least 4? (2] ~

c. Now, considering communication overhead, find out the maximum speedup
achievable with an infinite number of processors. (3]

2. (9 marks) Let us say we have somehow loaded two single-precision floating point
(following IEEE 754 floating point standard) numbers, which are in ARM integer
registers r0 and r1. Write ARM assembly code to multiply these two FP numbers (using
integer operations and integer registers, of course) and store the result in r0. You do
not need to call a procedure (for this function) or save registers on stack unless you
modify them in your program. Also, you do not need to implement guard, round or
sticky bits; and you can assume that the rounding step is not needed. However, you
need to detect overflow/underflow (and just call a procedure “SYSCALL"). You can use
the ARM instruction for integer multiplication (MUL) directly, if needed.

‘/{ (3 marks) In the following piece of x86 assembly code, the instruction byte addresses

are shown along side in hexadecim:il_fgmgt. All other numbers are decimal.
0x1000 movw EAX, [EDI+100]

addr1 popEDI — @ |

addr2 addEDI,;20 A

addr3 call MYPROC — A

addrd push EDI

a. Find addr1, addr2, addr3 and addr4 in hexadecimal format. [2]

b. If, before this piece of code, Memory[SP] contains 200 and EDI contains 100, what
will be their values after this code is executed? (1]

Scanned by CamScanner



